Identification of Clinical Response Patterns Through Application of Unsupervised Machine Learning on Clinical Trial Time Series Data

Presenter: Bethany Hyde, MBS

Senior Data Scientist, Janssen Commercial Data Sciences

Project Team: Maria Jazra, Sven Wegner, Bulent Ozturk, Jenna Eun, and Jeffrey Headd

Psoriasis Disease Area and Background

- 125 Million People Worldwide have Psoriasis
- Biologic treatment options for patients with moderate to sever plaque psoriasis
- Patient response to treatment measured by Psoriasis Area and Severity Index (PASI)

What is PASI 90?

PASI 90 response **is defined** as **90**% improvement or more from baseline on **PASI** score.

*https://www.healthline.com/health/psoriasis/facts-statistics-infographic#Prevalence

Available Data

Head-to-head Post Launch Trial - First comparator study of an IL-23 inhibitor, <u>guselkumab (GUS)</u> vs IL-17 inhibitor, <u>secukinumab (SEC)</u>

ECLIPSE: PHASE 3 DOUBLE-BLIND TRIAL (N=1048)^{1,2}

PATIENTS RANDOMIZED (R)	R	100 mg at Weeks O and 4, then every 8 weeks									TREMFYA® (guselkumab)				
	(n=534)	V V		Ť		ţ		Ų		Ų		Ť			
	Week	01234	8	12	16	20	24	28	32	36	40	44	48	52	56
	R		ψ	Ŵ	ψ	Ŵ	Ψ	Ŵ	Ŵ	Ψ	Ψ	ψŲ			
	(n=514)	Two 150-mg inje	ctions every v	week for the	first 5 weeks	s and every	4 weeks ther	reafter					Cosent (secukinu	t yx ® nab)	
	R (n=514)	Two 150-mg inje	ections every v	week for the	first 5 weeks	s and every	4 weeks the	reafter					Cosent (secukinut	t yx ® nab)	

Cosentyx® is a registered trademark of Novartis AG.

Data Captured

- Patient Demographics
- Baseline Measurements
- Patient Response over Time

Forming the Right Question

1. Identify different response patterns from patients who were treated with either guselkumab and secukinumab.

2. Analyze patient profiles present in each PASI pattern cluster in order to better understand potential qualitative relationships between clinical characteristics.

Technical Methodology Overview

Define Patient Treatment Arms and Data Preprocessing

Perform Unsupervised Machine Learning

Understand Each Cluster Patterns

Set-up of the Unsupervised ML analysis

Define Patient Treatment Arms and Data Preprocessing

	#
Status = Discontinued	72
Total Patients	973

Treatment	#
Secukinumab	466
Guselkumab	507

*Discontinued patients have too many missing data points, prohibiting reliable cluster analysis of PASI trends over time.

Unsupervised Machine Learning

How Clustering Algorithms Work in General

Unsupervised Machine Learning Approach

K-means time-series clustering algorithm

The number of clusters was determined by calculating the mean silhouette score

• Maximize Simplified Silhouette Index (SSI) while maintaining granularity of response patterns

Understand Profile of Patients in Each Cluster

Cluster Average PASI Response Comparison

Shaded areas represent the 95% confidence interval of the mean PASI response.

Guselkumab

Understanding Cluster Patterns

Mean PASI Response for Each Cluster

Secukinumab

Understanding Cluster Patterns

Mean PASI Response for Each Cluster

Key Baseline and Clinical Characteristics in Each Cluster

Shaded areas represent the 95% confidence interval of the mean PASI response.

Clinical Outcomes

What can the patient profiles by symptom response pattern tell us?

Guselkimab

% Naïve to Systemic Treatment

- % Psoriatic Arthritis
- Prior Biologic Treatment

Responding later with higher variability over time

Secukinumab

% Naïve to Systemic Treatment

% Psoriatic Arthritis

X Prior Biologic Treatment

Higher rate of loosing response after initially a good response

Conclusion

Clinical trial data used for patient profiles of symptom response

Clinical Trial Time-Series Data

• Patient Symptom response over time

Unsupervised Machine Learning

- Cluster Optimization using Silhouette Score
- K-Means Time Series Clustering Algorithm

Five distinct PASI response patterns were identified

• Independent of and unbiased by prespecified assumptions

Patient profiles provide insight into patient symptom response patterns

References

- 1. Reich et al. Lancet 2019;394:831-839.
- 2. Romain, T. et al. (2020). Tslearn, A Machine Learning Toolkit for Time Series Data. *Journal of Machine Learning Research*. http://jmlr.org/papers/v21/20-091.html
- 3. Brownlee, J. (2020). 10 Clustering Algorithms With Python. *Machine Learning Mastery*. https://machinelearningmastery.com/clustering-algorithms-with-python/
- 4. Bhardwaj, A. (2020). Silhouette Coefficient: Validating clustering techniques. *Medium*. https://towardsdatascience.com/silhouette-coefficient-validating-clustering-techniques-e976bb81d10c
- 5. Doshi-Velez, F., Ge, Y., & Kohane, I. (2014). Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis. *Pediatrics*, 133(1), e54–e63. https://doi.org/10.1542/peds.2013-0819
- 6. Newcomer SR, Steiner JF, Bayliss EA. (2011) Identifying subgroups of complex patients with cluster analysis. *The American Journal of Managed Care*.
- Lefèvre T, Rondet C, Parizot I, Chauvin P. (2014). Applying Multivariate Clustering Techniques to Health Data: The 4 Types of Healthcare Utilization in the Paris Metropolitan Area. *PLoS ONE* 9(12): e115064. https://doi.org/10.1371/journal.pone.0115064

Guselkumab

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Total
Patients, n (%)	193 (38.1)	131 (25.8)	16 (3.2)	122 (24.1)	45 (8.9)	507
Age, years	47.0	45.0	45.0	49.5	44.0	47.0
Age at diagnosis, years	26.0	23.0	20.5	27.0	21.0	25.0
BMI, kg/m ²	27.0	29.0	30.5	30.0	28.0	28.4
Disease duration, years	16.0	16.0	17.5	18.0	21.0	17.0
Naïve to systemic treatment, %	48.7	38.9	18.7	27.8	31.1	38.7
PASI at baseline	14.8	21.0	36.2	18.0	32.2	18.0
Self-reported PsA prevalence, %	13.4	17.5	31.2	23.7	26.6	18.7
BSA affected, %	15.0	24.0	43.0	20.0	45.0	20.0
Prior biologics	0	0	1	0	0	0

Secukinumab

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Total
Patients, n (%)	163 (35.0)	188 (40.3)	72 (15.5)	12 (2.6)	31 (6.7)	466
Age, years	46.0	40.0	46.5	39.0	49.0	43.0
Age at diagnosis, years	27.0	24.0	25.5	21.0	24.0	25.0
BMI, kg/m ²	29.0	28.0	29.0	27.5	34.0	29.5
Disease duration, years	15.0	14.2	16.9	17.5	21.0	15.0
Naïve to systemic treatment, %	34.9	42.5	22.2	58.3	19.3	35.6
PASI at baseline	17.4	16.2	27.1	48.4	22.4	18.0
Self-reported PsA prevalence, %	17.2	12.7	18.1	16.6	9.6	15.0
BSA affected, %	19.0	17.0	36.0	73.0	29.0	20.0
Prior biologics	0	0	0	0	1	0

Data are medians unless otherwise indicated.

